Welcome to RahulAnand.org

THEOREM# \( \lim_{\theta\to0} \dfrac{sinθ}{θ} \) = 1

THEOREM# \( \lim_{\theta\to0} \dfrac{sinθ}{θ} \) = 1

We have  \( \lim_{\theta\to0} { \sin\theta \over \theta } \) = 1 Consider the below diagram. We have r = radius of the circle.A = centre of the circle.The sector ⌔ formed by the arc BD subtends an angle θ at the centre. Case 1 : θ > 0 i.e. θ is +ve Let 0 ≤ θ ≤ \(...

Theorem# Limit of tanθ as θ → 0

Proof : We have, lim\(_{θ\to 0} { \dfrac {\mathrm tan \mathrm θ}{ \mathrm θ} }   \) = lim\(_{θ\to 0} { \dfrac {\mathrm \sin \mathrm θ} {\mathrm θ \mathrm \cos\mathrm θ} }   \)      \( \{∵ \tan\theta =  \dfrac...